International
Requirements
Engineering
Board

Thorsten Cziharz
Peter Hruschka
Stefan Queins
Thorsten Weyer

Handbook of Requirements
Modeling According to the
IREB Standard

Education and Training for
IREB Certified Professional for Requirements Engineering Advanced
Level "Requirements Modeling”

Version 1.3 August 2016

Translated from German by:

Ed van Akkeren, Lars Baumann, Jan Jaap Cannegieter, Colin Hood,
Peter Hruschka, Matthias Lampe, Ellen Leutbecher, Hans van Loenhoud,
Piet de Roo, Stefan Staal, and Johan Zandhuis

The compilation of this handbook was supported by

. . ‘ The Ruhr Institute for Software Technology S 0 S)

>89

https://www.sophist.de/en/start/
https://sse.uni-due.de/en/welcome/

Terms of Use

1. Any individual or training provider may use this handbook as a basis for seminars provid-
ed that the copyright holders are acknowledged and the source and owner of the copyright
is named. In addition, this handbook may be used for advertising purposes with the consent
of the IREB.

2. Any individual or group of individuals may use this handbook as a basis for articles, books,
or other derived publications provided that the authors and the IREB are credited as the
source and owners of the copyright.

This work, including all its parts, is protected by copyright. Use of the document is permit-
ted—where this is not permitted explicitly—by copyright law only with the consent of the
copyright owners. This applies in particular to reproductions, adaptations, translations, mi-
crofilming, storage and processing in electronic systems, and public disclosure.

Thanks

Our thanks to Torsten Bandyszak, Sibylle Becker, Nelufar Ulfat-Bunyadi, Ruth Rossi,
Tracy Duffy, and Stefan Sturm for their support in the preparation of the manuscript.

This handbook was produced by (in alphabetical order):
Thorsten Cziharz, Dr. Peter Hruschka, Dr. Stefan Queins, and Dr. Thorsten Weyer

Copyright © 2016 "Handbook of Requirements Modeling According to the IREB Standard" is
with the authors listed. Rights are transferred to the IREB International Requirements Engi-
neering Board e.V.

Table of Contents

0 & 7=) (0l o 1 4161 o) (= 1
1.1 The Benefits of Modeling REQUITEMENTSccreereereereerrerneesresseesesssesessesessssssessssssssssesssssssss 1
1.2 Applications of Requirements MOAeliNgccouerreneerrerneeneeneennesssessessesseesssssesssssssssessessesaes 2
1.3 Terms and Concepts in Requirements MoOdeling ... 2
1.4 Requirements MOAEIS ... sssssssssssssssnen 3
1.5 Views in Requirements MOdeling ... ssssssssssssssssssssssssssssses 6
1.6 Views of the Dynamic View in Requirements Modeling..........couemrneninesninsnnsenssnsenns 8
1.7 Adapting Modeling Languages for Requirements Modeling..........ccoveemeeneenmerneesseeseeneenns 9
1.8 Integrating Textual Requirements in the Requirements Model.........cocoeninenererneneenas 10
1.9 Documenting Dependencies between Model Elementsccocovnncncncenenceneneeneneens 10
1.10 The Benefits of Requirements MOdelingcooerereerrenceneenceneeneenseseesemsesseesesssssessessessesseenes 11
1.11 The Quality of Requirements MOdEISumremimsrnenrnenesssssessssssssssssssssssssssens 12
1.12 FUTIther REAMINEG ...oceeeeeecececececeeeseseseeseeseessessesee e ssssssssnsans 14
P 000315\ (o T U=] 0 o = S 15
2.1 PUIPOSE.iresrissssss s e 15
2.2 CONLEXE DIQAGTAIMS ..oeuercereercereeeeseeeeseeeesessssessesssssssssessssssssssssssss s sssees 15
2.3 Other Types of Context MOAeliNg......c.ovumremmrremirsnesnesesssssessessssesssssssssssssssesssssssssssssns 18
2.4 FUIther REAAING ..o ss s st ssssssssaees 18
3 Information Structure MOdeling ... sssssses 19
3.1 PUIPOSE ittt 19
3.2 Modeling Information STIUCTUTES.......cocceeereereereereesersessesssesessessesssssssssssssssssessesssssssssssssssssssssses 19
TS TN 000) 0] (I 25 V10 o) LT 20
3.4 Modeling Classes, Attributes, and Data TYPES.....ccurrereereereeneeneeseesessessessessesssssessessessessesnes 20
3.5 Modeling RelationShiPsS.....cooereeneereieerersessesseesessessesssssesssssesssssesssans 29
3.6 Modeling Generalizations and SpecialiZations........ccerrnenrnrnsenseeressssessessseens 36
3.7 Other MOdeling CONCEPLS ...coveeerrererreererremrersessesssssessessessessssssssssssssesssssssssssssssssesssssesssssssssssssssssssaes 38
3.8 FUrther REAdiNG ... 39
4 DYNAMIC VIBWS .ottt bbb bbb 41
4.1 Dynamic Views of Requirements MoOdelingooeneneneensercenseneeneescenesneeneeseesessessessesseens 41
4.2 USE CaSE MOAEIING....ririeurirrernririessesrereessessesssessssssss s sssss s ssssssssssss s ssssssssassssssssssans 41
4.3 Data Flow-Oriented and Control Flow-Oriented Modeling of Requirements............ 48
4.4 State-Oriented Modeling of REQUITEMENTS.......ccocerecerrecereeeeseereeneeseeseeseeseesessessessessessesseseens 61
4.5 FUIther REAMING ..o sssss s s s sssnsans 78
5 SCENATIO MOAEINEG ..o s s 79
ST N o 11 g 0 1] PSP 79
5.2 Relationship between Scenarios and Use CaASEScumrmmeremimsnessmsnesssssssessssssssssssssens 80
5.3 Approaches to Scenario MOdeling......cocoererceneeneeneeneeneneseesessseseessssessessessessesssssssssssessessssns 80
5.4 Simple Examples of a Modeled SCENATIOcocereereerernsesesrerseessesessessssssssessesssssssssessessseens 81
5.5 Scenario Modeling using Sequence Diagrams..........ccorerenerneeneenseneenesnesnessesssssssssssessesseenes 83
5.6 Scenario Modeling with Communication Diagrams.........coemernenesneeneesessessessssseens 91
5.7 Examples of Typical Diagrams in the Scenario VIeWoneneneeneeseesesssesneseeens 91
5.8 FUITher REAAING ..ottt 95
GLOSSATY eouttueueeeesesseesees s s s s s R AR AR 97
LiSt Of ADDIeVIationsS ... 103

2] ()) 8 Lol <1 105

IREB CPRE Advanced Level Module
"Requirements Modeling"

In recent years, the scope and complexity of typical software-based systems have increased
significantly. This is reflected directly in the number of requirements arising and the com-
plexity in terms of the mutual dependencies between requirements. All forecasts about the
expected future increase in the size and complexity of software-based systems predict that
the number of requirements and the complexity of interdependencies will continue to in-
crease dramatically in the future. This becomes clear, for example, if we consider the devel-
opment trends in the field of business information systems in terms of the Internet of Ser-
vices (IoS) and Internet of Things (IoT) or the development in the field of intelligent embed-
ded systems. Both trends are paving the way for a somewhat revolutionary penetration of
the physical world by dynamic networked software-based systems, referred to as "cyber-
physical systems".

The first thing to note is that requirements are taking a central role in the development pro-
cess of software-based systems. What is more, the extent and complexity of the require-
ments of a system are becoming more difficult to handle. Accordingly, the specification of
requirements has already reached its limits in many areas if this is done only in natural lan-
guage (i.e., in text form). In many cases, this has a lasting negative effect on the development
projects concerned. Due to the many advantages of using graphical models with respect to
readability, controlling complexity, automatic analyzability, and the processing of extensive
and complex situations, the use of graphical modeling of requirements is increasing rapidly.

The IREB Certified Professional for Requirements Engineering advanced level module "Re-
quirements Modeling" provides the tools for specifying requirements of large and complex
systems using standardized and widely used modeling languages. Comprehensive tool sup-
port is available for these modeling languages—from freeware tools to powerful commercial
CASE tools, there is great potential for automation and for seamless integration with other
tools used in development processes (e.g., for project and test management).

More information on the IREB Certified Professional for Requirements Engineering ad-
vanced level module "Requirements Modeling" can be found at: http://www.ireb.org.

iv

http://www.ireb.org/

Foreword

This Handbook of Requirements Modeling according to the IREB Standard complements the
syllabus of the International Requirements Engineering Board for the advanced level module
"Requirements Modeling" Version 2.0 of September 2015.

This handbook is intended for training providers who want to offer seminars on require-
ments modeling according to the IREB standard, as well as for training participants and in-
terested practitioners who want to get a detailed insight into the subject matter of this ad-
vanced level module and in requirements modeling according to the IREB standard.

This handbook is not a substitute for a training on the subject. Instead, it represents a link
between the syllabus (which merely lists and explains the learning objectives of the module)
and the wide range of literature that has emerged on the topic of requirements modeling in
recent decades.

The contents of this handbook, together with references for more detailed literature, sup-
port training providers in focusing on preparing training participants for the certification
exam. This handbook provides training participants and interested practitioners with the
opportunity to deepen their knowledge of requirements modeling and to supplement the de-
tailed content based on the literature recommendations. In addition, this handbook is in-
tended as a reference for refreshing the knowledge gained about the various topics of re-
quirements modeling following successful certification.

Suggestions for improvements and corrections are always welcome!

E-mail contact: requirementsmodeling.guide@ireb.org

We hope that you enjoy studying this handbook and successfully pass the certification exam
for the IREB Certified Professional for Requirements Engineering advanced level module
"Requirements Modeling".

e Thorsten Cziharz (Sophist GmbH)

e Peter Hruschka (Atlantic Systems Guild)

e Stefan Queins (Sophist GmbH)

e Thorsten Weyer (paluno - The Ruhr Institute for Software Technology)

Autumn 2015

mailto:requirementsmodeling.guide@ireb.org

Version History

Version | Date Comment

1.1 September 2015 First release of the English version of the handbook based on
the original German version (1.0). Contains some minor changes
compared to the original German version v1.0.

1.2 May 2016 Minor bugfixing and language polishing.

1.3 August 2016 Content on the topic “modeling of association classes” added

and minor corrections.

1 Basic Principles

Requirements play a fundamental role in the life cycle of systems. In particular, the various
development disciplines (such as architecture, design, implementation, and testing) are
based mainly on the requirements of the system as specified during requirements engineer-
ing and are largely dependent on the quality of these requirements. In addition to the devel-
opment disciplines, activities such as maintenance and service right up to decommissioning
of the system and development of upstream activities (e.g., assessment of the risks and costs
of the development project) depend highly on the requirements and their quality.

According to the IREB Glossary of Requirements Engineering Terminology [Glin2011], a re-
quirement is (1) a need that is perceived by a stakeholder or (2) a capability or property that
a system must have. Requirements engineering is concerned with ensuring that the re-
quirements of the system under development are formulated as completely, correctly, and
precisely as possible, thereby providing optimal support for the other development disci-
plines and activities in the life cycle of the system.

1.1 The Benefits of Modeling Requirements

Using a highly simplified example, Figure 1 shows the difference between textual and mod-
eled requirements. The left-hand side shows four textual requirements which specify neces-
sary behavior in relation to the input of data via an entry screen. The right-hand side shows
a requirements diagram in which the corresponding requirements are modeled.

Textual requirements Modeled requirements

Display entry

Req-1: The system shall display the entry mask

mask

Req-2: After the action "Show entry mask"
is completed, or after the action "Show
error" is completed, the system shall offer
the user the option to enter data

Req-3: After the action "Enter data" is
completed and if the data is ok, the system

shall store the data Enter data

Req-4: After the action "Enter data" is
completed and if the data is not ok, the
system shall issue an error message |Data oK)

Figure 1: Textual requirements vs. modeled requirements

[Data
notok _ [Issueerror

message

As this simple example already indicates, modeling the requirements shows the necessary
behavior of the system in a more structured and understandable way. The reader can follow
the process step by step. Furthermore, this simple example clearly shows that the interac-
tion of the various aspects of the required system behavior are explicitly visible in the mod-
eled requirements, whereas this information is only implicitly present in the textual re-
quirements (see also [Davi1l993]). Typically, software systems today comprise significantly
more complex processes, meaning that the associated textual requirements are very exten-
sive and complex. It is then difficult for the reader to understand the interactions within
such complex processes solely on the basis of textual requirements.

2 Basic Principles

1.2 Applications of Requirements Modeling

Today, there are various applications for modeling requirements in requirements engineer-
ing, as explained in this section.

1.2.1.1 Modeling Requirements as a Means of Specification

In this case, requirements diagrams replace textually specified requirements. This means
that requirements diagrams are used as the primary means for specifying the system re-
quirements or part of the system requirements. The requirements diagrams can (and
should) be supplemented by textual requirements or textual explanations, specifically when
a text is more compact or easier to handle than diagrams. If all requirements still need to be
available in textual form (e.g., due to contractual conditions or certification requirements),
they can be generated from the requirements models—for example, using templates for
converting requirements diagrams into text form.

1.2.1.2 Modeling Existing Textual Requirements for the Purpose of Testing

In this case, a requirements diagram is created for a logically coherent set of textually speci-
fied requirements which, for example, specify a necessarily complex system behavior. The
purpose of this diagram is to check the comprehensibility of textual requirements or to un-
cover inconsistencies or omissions in the textual requirements. Any defects uncovered are
then corrected in the textual requirements.

1.2.1.3 Modeling Existing Textual Requirements for Clarity

In this case, for example, modeled requirements are used to represent extensive and com-
plex relationships that affect the behavior of the system. However, this redundant form of
the specification can lead to significant problems with regard to contradictions between tex-
tually specified requirements and modeled requirements.

1.3 Terms and Concepts in Requirements Modeling

Using the general terms and concepts found in system modeling, the following explanation
looks at the terms and concepts relevant for modeling requirements as well as the important
relationships between the various terms and concepts. Figure 2 shows a semantic network
of the basic terms and concepts relevant for requirements modeling. Terms that are already
defined in the IREB Glossary of Requirements Engineering Terminology are labeled with 1.

The system of terms is based on various definitions in the IREB Glossary of Requirements En-
gineering Terminology [Glin2011] and complements this glossary with terms and concepts
that are particularly essential for requirements modeling. A model is regarded as an ab-
stracting image of the properties of a system. To make the scope and complexity of the mod-
eling manageable, various views of the system (and its environment) and the properties of
the system in relation to each specific view are represented through diagrams and supple-
mentary textual model elements. Each diagram is based on a specific diagram type, which in
turn is defined via a modeling language (more precisely by syntax, semantics, and pragmat-
ics). The underlying modeling language of a diagram type defines the set of modeling con-
structs that can be used to construct the corresponding diagrams (e.g., class and association
for the construction of class diagrams). In a modeling language, graphical and/or textual no-
tations are defined for the modeling constructs.

1.4 Requirements Models 3

isa \
Tsystem < abstract Trequirements model

1 representation \

represents _\) 1.*
1

Tview ———

is formed by
> Trequirement

* is represented I !

\ 1 specifies

is represented model element

o+ textual model _ /‘/ 0.*

J

consists of 1

1sa

_—— element

: refers to O *
is formed by / .
refers to
refers to
leagram \

*

\ consists of

\ graphlcal mOdel is instance of
is instance of) element

N

diagram type ——

f 1.+ 0.5 has \» 1
modeling construct

= 1.* y\ 1

defines

) 1 represented represented
L I BTEIE 1. % by

s\ : 01 v o1

/_/ is defined by \' graphical notation textual notation
. 1 : o element element

Tsyntax Tsemantics pragmatics

Figure 2: Conceptual network of the core terminology in requirements modeling

A diagram consists of a set of model elements, each representing a specific graphical model-
ing construct of the modeling language of the associated diagram type (e.g., class: "person”,
association: "is employed by", class: "company"). Diagrams and graphical model elements
can be supplemented by textual model elements (e.g., textual description of the trigger of a
use case) which express specific textual modeling constructs (e.g., a section of a use case
template). The graphical and textual model elements form the atomic constituents of models.
A requirements model is a specific type of model (more precisely: a type of system model)
used to specify the requirements of a system with the aid of diagrams and textual supple-
ments.

1.4 Requirements Models
The individual requirements of a requirements model are represented by model elements
that are specified within requirements diagrams and via textual additions to these diagrams.
1.4.1 Modeling Languages for Requirements Modeling

A number of diagram types and associated modeling languages are available for require-
ments modeling. The selection of the diagram type to be used in each case depends on the

4 Basic Principles

purpose, which thus determines which specific requirements of the system should be docu-
mented and which persons are the "target audience" for the requirements models.

The relevance of a diagram type often also depends on the type of system (e.g., operational
information system or embedded system) and partly on the application domain (e.g., banks,
insurance companies, automation technology, vehicle/aircraft industry) for which the sys-
tem is being developed. Often (e.g., in embedded systems), requirements engineering focus-
es on the reactive behavior of the system. This is because the size and complexity of the re-
quired behavior of today's embedded systems are mainly determined by the necessary reac-
tivity of the systems. Therefore, state machine diagrams of the OMG SysML [OMG2010a],
OMG UML [OMG2010b], or MATLAB/Simulink Stateflow diagrams are used for require-
ments modeling when developing embedded systems. The state machine diagrams can be
supplemented by complementary diagrams, such as use case diagrams, scenarios, or activity
diagrams. In contrast, business information systems (e.g., software for processing loan ap-
plications) usually have no extensive and complex reactive behavior. Therefore, when mod-
eling requirements for such systems today, it is primarily diagram types that allow the mod-
eling of extensive and complex information structures (e.g.,, UML class diagrams) that are
used. Other diagram types used are those that allow the modeling of process-oriented as-
pects, such as event-based process chains [Sche2000] or BPMN diagrams [OMG2011] as part
of the business analysis, as well as UML activity diagrams—for example, to model require-
ments with reference to the required flow logic of the system under development. Here
again, other complementary types of diagrams can be used—for example state machine dia-
grams—in order to model the necessary requirements in terms of reactivity of the system.

In addition to specific approaches such as event-driven process chains (EPCs) or BPMN,
which are often used in the context of business analysis or MATLAB/Simulink diagrams in
requirements modeling for embedded systems, the "universal”" modeling approaches UML
and SysML are very often used for modeling requirements. UML version 2.4 distinguishes
between 14 different diagram types, seven of which are used for structure modeling and
seven diagram types are used for behavior modeling. Note that the diagram type "profile di-
agram" is used to document language profiles (i.e., adaptations and extensions to the model-
ing language) and not, like the other diagram types, for actual system modeling. SysML was
designed specifically for modeling in the development of complex systems and is a subset of
UML extended with special diagram types and notation elements. The corresponding exten-
sions relate to new structure diagrams (internal block diagrams, block definition diagrams,
parametric diagrams). SysML no longer contains the diagram type "class diagram". With re-
gard to the behavior diagrams, no new diagram types are introduced in SysML; instead, the
behavioral diagram types of UML are used, whereby SysML activity diagrams differ from the
UML activity diagrams with respect to syntax and semantics.

1.4.2 Requirements Modeling versus System Design

In practice, it is sometimes difficult to distinguish between requirements diagrams and de-
sign diagrams (see, e.g., [BoRJ2005]). The cause is frequently seen in the fact that the same
universal modeling languages are used for requirements modeling, such as UML or SysML. In
fact, the cause in most cases is that the alleged requirements diagrams specify not require-
ments but rather the system design, or that requirements and design are mixed in diagrams.
The latter is the case, for example, when the required system behavior is already modeled in
relation to individual, specific design decisions in a diagram and these design decisions are
not specified by boundary conditions (constraints), for example, in terms of the technology
to be used (see Section 1.5).

1.4 Requirements Models 5

1.4.2.1 Requirements Diagrams and Design Diagrams in System Analysis

As part of the system analysis, it is often the case that both design diagrams and require-
ments diagrams are created. The first step in system analysis is typically the analysis of an
existing system. The "system" can be anything from an individual software system to com-
plex socio-technical systems where a variety of software systems and people (or roles) co-
operate in order to fulfill an overarching purpose, as is the case, for example, in complex
business information systems. The system analysis itself can be performed from different
perspectives, such as function-centered or data-centered (see, e.g., [DeMal979] and
[ShMe1988]). In the context of system analysis, the system under development is often ini-
tially analyzed (e.g., the system in operation and the associated documentation) and mod-
eled in the form of diagrams as it is perceived. In this case, the technical incarnation of the
system is modeled first, that is, the concrete technical solution as it is in operation (see
[McPa1984]). The corresponding model of the incarnation is then analyzed in terms of the
underlying technical aspects, meaning that it is abstracted from the concrete technical im-
plementation to identify the business core. The result of this activity is a model of the func-
tional requirements of the system under development. Both models—the incarnation model
(i.e., the technical solution) and the model of the functional requirements (also referred to as
the essence model)—are factual models, that is, models that document the existing proper-
ties of the system under development (SuD). As part of the system analysis, a target model is
then often formulated based on the model of the functional requirements. This target model
specifies which technical requirements are to be implemented by a newly developed system
or as part of a change project. These technical requirements are then incorporated back into
the development process. In typical systems analysis processes, therefore, both require-
ments diagrams and design diagrams are created. The goal of system analysis is to model the
functional requirements of the system under development.

1.4.2.2 Relationship between Requirements Models and Design Models

During the development of complex software systems, requirements and design are often
developed with very strong links. This close link between the development of requirements
and the definition of a solution in the form of a system design is illustrated with the twin
peaks model shown in Figure 3 (cf. [Nuse2001]).

_ Design decisions Dissection planes of
Degree of solution Design constraints the total system

relatednesst

B e R,

e.g. Total system

Low R >
femnT TR Foz=-==22200
R v 4222 se.g. Subsystems
i N=m = -- : ,‘— - A.‘:l g
Sl oo=== — P —————— :—-=,-=:::_;____
R R -=
F o --mT7T | i __a--" eg Software
:, H _i-- .
F o=ccccoom=c (S R L Sy
High S P e >
ohl o --

7 Requirements models Design models

Problem view Solution view

Figure 3: Relationship between requirements and design

As illustrated in the figure, during the development of complex software systems, there is a
strong interaction between the definition of requirements and the system design. Typically,
the first step is to produce a set of more general requirements for the complete system. This
set of requirements is then the basis for the definition of the preliminary system architecture
which satisfies these requirements. During the transition between requirements definition

6 Basic Principles

and system design, design decisions have to be made and the given conditions for the design
(design constraints) have to be met (e.g., the specification of a style of architecture to be
used). Starting from the initial system architecture, which consists for example of (logical)
subsystems, the requirements for the individual subsystems can be specified. If sufficiently
detailed requirements are available, the initial system design is refined. As an example, Fig-
ure 3 illustrates the relationship between the requirements and design of a technical system
(complete system) which is initially abstracted from the separation between hardware and
software. The requirements for the actual software of the system are first specified on the
third system level. For pure software development projects, the software to be developed is
classified at the highest system level. On the lower system levels, logical components and
software parts are then considered (see, e.g., [[S026702], [HaHP2001]).

In this approach, the design decisions at one level significantly affect the definition of re-
quirements at the next lower level of detail—that is, the requirements of the next level are
based on the design decisions previously made which in turn represent a framework for the
specification of requirements at the next lower level. Even though there is a close link be-
tween requirements and architectural design, within the scope of requirements modeling it
is all the more important to strictly separate the requirements model from the design model
and to establish the relationships through appropriate dependency relationships (see Sec-
tion 1.9). More details can be found in [Pohl2010], [BDH2012], and [HaHP2001].

1.5 Views in Requirements Modeling

The foundation level of the Certified Professional for Requirements Engineering distin-
guishes between three views in the modeling of functional requirements (cf. [PoRu2011]),
namely (1) the static-structural view, (2) the behavioral view, and (3) the functional view.
Building on these basic views of requirements modeling, a more differentiating set of views
is presented below (see Figure 4).1

1 The creation of views can be established in various ways within the scope of requirements engineering. For
example, views can be defined that address specific concerns of stakeholders. A "user view" can be defined of
the requirements of the system, for example. This view considers (models) only those requirements that di-
rectly concern the use of the system under development. In a "maintenance engineering view", only those sys-
tem requirements that relate directly to the maintenance of the system would be considered. Various "philoso-
phies" for establishing views can be applied in combination to control the scope and complexity of require-
ments modeling. It is conceivable, for example, that the user view and the maintenance engineering view are
each considered from an information structure view and a dynamic view. Through common concepts or map-
ping relationships, the requirements models of the different views can then be integrated into an overall model.

1.5 Views in Requirements Modeling 7

Requirements View

=== T T

ContextView Information-Structure View Dynamic View
Class Diagram (IREB AL)
Entity-relationship Diagram

State-oriented View
State Machine Diagram (IREB AL)
Control-Flow-oriented View Finite Automaton
Activity Diagram (IREB AL) Statecharts
Event-driven Process Chain Simulink Stateflow
Business Process Modeling Language

Use Case View

Use Case Diagram
(IREB AL)

Data-Flow-oriented View
Data-Flow Diagram (IREB AL) . e
Activity Diagram with Object-Flow / Data-Flow Scenario View
(IREB AL) Sequence Diagram (IREB AL)
Communication Diagram (IREB AL)

Simulink Block Diagram
Message Sequence Charts according to ITU Z.120

Figure 4: Views in requirements modeling in the IREB advanced level module "Requirements Modeling"

1.5.1 Context View

A key challenge in requirements engineering is to understand the context of the system un-
der development (e.g., the software to be developed). This includes the knowledge of what
other systems are related to the system under development in an operational context, prop-
erties of these external systems, as well as knowledge about which roles, people interact
with the system and which properties they have that are relevant for the system. Context
modeling is typically used to identify the necessary interfaces between the system under de-
velopment and its context.

1.5.2 Information Structure View

The information structure view focuses on requirements of the system under development
which are related to static and structural aspects of the functionality, such as the structure of
data to be processed by the system. Typical diagram types used here are class diagrams or
various dialects of entity-relationship diagrams (e.g., according to Chen or in the FMC ap-
proach).

1.5.3 Dynamic View

The dynamic view focuses on those requirements of the system under development which
are related to dynamic aspects of the functionality (see, e.g., [BoR]J2005]). For the purposes
of the foundation level of the Certified Professional for Requirements Engineering, the dy-
namic view of the requirements of a system is formed through the behavioral and functional
views. To model the requirements in the dynamic view, in advanced level requirements
modeling, the dynamic view is strongly differentiated (see Section 1.6). Typical diagram
types used for requirements modeling here are use case diagrams, activity diagrams, state
machine diagrams, data flow diagrams, and sequence diagrams.

1.5.4 Quality View

The quality view focuses on those requirements of the system which relate to necessary
qualities of the system under development or individual system components. Although there
are a number of approaches for model-based specification of quality requirements currently

8 Basic Principles

being researched (see, e.g., [HKDW2012]), in practice today quality requirements (regard-
ing, for example, performance, reliability, real-time behavior, safety, or robustness) are still
specified within requirements models mainly by textual supplements or as an annotation to
specific model elements in requirements diagrams (see, e.g., [RiWe2007]). A detailed taxon-
omy of requirements in the quality view (quality requirements) can be found in ISO 25010
[[SO25010]. Detailed information on the documentation of requirements in the quality view
can be found in [Pohl2010].

1.5.5 Constraints View

The constraints view focuses on requirements in terms of boundary conditions (i.e., external
constraints) to be adhered to by the system under development (or the associated develop-
ment process) (see [ISO29148]). Typical boundary conditions include organizational, regula-
tory, or technological conditions. Technological constraints occur, for example, in the form of
design constraints (e.g., service-based or client-server) which define a specific architectural
style for the system under development. Such constraints are often documented in textual
form (or by textual additions in requirements models), whereas specific types of diagrams
such as class diagrams or component diagrams are often also suitable for documenting or-
ganizational or technical constraints. Detailed information about boundary conditions can be
found in [RoR02006], for example.

1.6 Views of the Dynamic View in Requirements Modeling

The dynamic view in requirements modeling considers those requirements which relate to
the chronological-logical relationships in the required behavior of the system. Today's busi-
ness information systems—and intelligent embedded systems even more so—have a very
extensive and complex structure of such relationships. These relationships have to be elicit-
ed and analyzed and specified in the requirements as part of requirements engineering. To
make the scope and complexity of such dynamic relationships in the system behavior man-
ageable within requirements modeling, the dynamic view is divided into views. The integra-
tion of these views leads to an overall model of the dynamic view of the requirements of the
system under development, as shown in Figure 4.

1.6.1 Use Case View (User Functions and Dependencies to the System
Context)

Within the dynamic view, the use case view considers the high-level system user functions
and their relationships to actors in the system context. A high-level user function character-
izes a functionality that the system must offer for an actor within the context to gain a bene-
fit (added value). Use case diagrams are typically used for modeling here.

1.6.2 Data Flow-Oriented View (System Functions and Data
Dependencies)

Within the dynamic view, the data flow-oriented view considers the functions that are per-
ceptible at the system interface, as well as the data dependencies between these functions
and with actors in the system context. The functions can also be analyzed at various levels of
granularity, for example, from high-level user functions (e.g., use cases) to finely detailed
technical functions, the interaction of which implements the functionality of the use case.

1.7 Adapting Modeling Languages for Requirements Modeling 9

Typical diagrams used here are data flow diagrams (e.g., according to DeMarco [DeMa1979])
and activity diagrams that focus on the object flow between actions.

1.6.3 Control Flow-Oriented View (Process Flow Logic)

Within the dynamic view, the control flow-oriented view considers the processes (or activi-
ties or actions) perceptible at the interface of the system and their flow logic. The control
flow relationships are considered in processes that occur, for example, in the form of se-
quential, alternating, or concurrent sequences. UML or SysML activity diagrams are typically
used to model the control flow-oriented view. A special feature with regard to business
analysis is that (extended) event-driven process chains or BPMN diagrams are also used for
modeling at business process level.

1.6.4 State-Oriented View (States and State Changes)

The required state space of the system is modeled in the state-oriented view within the dy-
namic view. In particular, the model shows the reactive behavior of the system in relation to
the system context. The states and state changes that are observable at the interface be-
tween the system and the system context are modeled in this view. A state change of the sys-
tem under development can be triggered by an event in the system context, by a time event,
or by an intrinsic event. Finite automata, Harel Statecharts, or UML state machine diagrams
based on these concepts are typically used here.

1.6.5 Scenario View (Interaction Sequences between Actors and the
System)

The scenario view within the dynamic view considers interactions between act